Synchronizing automata: new techniques and results

Raphaël Jungers

UCLouvain

Jiao Tong Univ., Apr. 2015

Joint work with
François Gonze
Synchronizing automata

Definition: A (complete deterministic) automaton is synchronizing if there is a sequence of colors such that all the paths compatible with this sequence end in the same node.

Cerny’s conjecture (1964): If a graph is synchronizing, then it admits a synchronizing sequence of length at most \((n-1)^2\).

Connected with the Road coloring conjecture [1977 Adler et al.] [2007 Trahtman]
Disclaimer

What I won’t do today

- Prove Cerny’s conjecture in particular cases
- Improve the upper bound on the shortest synchronizing word
 (though I would love to!)

But…

Develop new tools
Proof of concept
Mostly ideas, very few technical considerations
Plan

- Černý’s conjecture
- Approach: the triple rendezvous time
- A tool: the synchronizing probability function
- Counter examples
Outline

- Synchronizing automata, Cerny’s conjecture, and previous approaches
- The synchronizing probability function and previous results
- New results: a counterexample and a new upper bound (on a related quantity)
- Discussion
Outline

- Synchronizing automata, Cerny’s conjecture, and previous approaches

- The synchronizing probability function and previous results

- New results: a counterexample and a new upper bound (on a related quantity)

- Discussion
Theorem [1990 Eppstein]: Synchronizing graphs are recognizable in polynomial time.

Length \((n-1)^2\)
Previous approaches (1)

Cerny’s conjecture (1964): If a graph is synchronizing, then it admits a synchronizing sequence of length at most \((n-1)^2\)

Known upper bounds on the shortest synchronizing word:

- [1964 Cerny] \(2^n\)
- [1966 Starke] \(\frac{n^3}{2} - \frac{3}{2} n^2 + n + 1\)
- [1970 Kohavi] \(\frac{n(n-1)^2}{2}\)
- [1978 Pin] \(\frac{7}{27} n^3 - \frac{17}{18} n^2 + \frac{17}{6} n - 3\)
- [1982 Frankl (Pin)] \(\frac{n^3-n}{6}\)
 - The best so far!

[Gonze, Trahtman, J. 2015]
Previous approaches (2)

Cerny’s conjecture (1964): If a graph is synchronizing, then it admits a synchronizing sequence of length at most \((n-1)^2\).

- **Particular cases**
 - [1981 Pin] small rank \((\log(n))\), circular of prime size
 - [1990 Eppstein] monotonic
 - [1998 Dubuc] circular
 - [2001 Kari] Eulerian
 - [2009 Trahtman] aperiodic
 - [2009 Beal Perrin] one-cluster
 - [2009 Carpi d’Alessandro] locally strongly transitive
 - [2009 Volkov] partial order-related
 - [2010 Steinberg] ...

- **Complexity issues**
 - NP-hard [1990 Eppstein]
 - Apx-hard [2010 Berlinkov]
Outline

• Synchronizing automata, Cerny’s conjecture, and previous approaches

• The synchronizing probability function and previous results

• New results: a counterexample and a new upper bound (on a related quantity)

• Discussion
Synchronizing automata

We need a more holistic approach

Theorem [1990 Eppstein]: Synchronizing graphs are Recognizable in polynomial time.

Eppstein’s square graph gives a poor strategy to find a short synchronizing word

→ motivation: take into account the whole set of color sequences of a length t, not only the best one
A simple game

- Two players playing on a graph: the «mouse» and the «cat»

- A parameter \(t\) (here, \(t=2\))

- The cat is hidden somewhere on a colored graph, and the mouse must pick up a node where to catch him

- Before to do that, the mouse may impose the cat to follow a particular sequence of colors of length \(t\)

- The cat wants to minimize the probability to get caught
Two players playing on a graph: the « mouse » and the « cat »

A parameter t (here, t=2)

Definition: The synchronizing probability function $k(t)$ of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length t) the mouse chooses.
The synchronizing probability function

- The cat’s strategy must be probabilistic (i.e. a probability function on the nodes)

Definition: The synchronizing probability function $k(t)$ of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length t) the mouse chooses
The cat’s strategy must be probabilistic (i.e. a probability function on the nodes)

Definition: The synchronizing probability function $k(t)$ of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length t) the mouse chooses.
The synchronizing probability function

- The cat’s strategy must be probabilistic (i.e. a probability function on the nodes)
 \(k(0) = \frac{1}{2} \)
 \(k(1) = 1 \)

- Definition: The synchronizing probability function \(k(t) \) of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length \(t \)) the mouse chooses.
 \(p(1) = \frac{1}{2} \)
 \(p(2) = \frac{1}{2} \)
 \(k(1) = 1 \)
The synchronizing probability function

- The cat’s strategy must be probabilistic (i.e. a probability function on the nodes)

 \[k(0) = \frac{1}{2} \]

 \[k(1) = 1 \]

- Definition: The synchronizing probability function \(k(t) \) of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length \(t \)) the mouse chooses.
The synchronizing probability function

- The cat’s strategy must be probabilistic (i.e. a probability function on the nodes)

 \[k(0) = \frac{1}{2} \]

 \[k(1) = 1 \]

Definition: The synchronizing probability function \(k(t) \) of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length \(t \)) the mouse chooses.
The synchronizing probability function

- **Proposition:** The automaton has a synchronizing word of length t if and only if $k(t)=1$

- Thus Cerny’s conjecture is:

$$k((n-1)^2)=1$$

- Note that in general, the *mouse’s policy* might be probabilistic as well
A few equations…

- **Definition:** The synchronizing probability function $k(t)$ of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length t) the mouse chooses.

$$\min_{p,k} k$$

$$s.t. \quad pA \leq ke^T \quad \forall A \in \Sigma^{\leq t}$$

$$ep^T = 1$$

$$p \geq 0.$$

- The problem he has to solve is an LP (Linear Program)!
A few equations…

- **Definition**: The synchronizing probability function $k(t)$ of the automaton is the **smallest probability** the cat can ensure to get caught, whatever strategy (of length t) the mouse chooses.

\[
\begin{align*}
\min_{p,k} & \quad k \\
\text{s.t.} & \quad pA \leq ke^T \\
& \quad ep^T = 1 \\
& \quad p \geq 0.
\end{align*}
\]

\[
\begin{align*}
\max_{q,k} & \quad k \\
\text{s.t.} & \quad Aq \geq ke^T \\
& \quad eq = 1 \\
& \quad q \geq 0.
\end{align*}
\]

- The problem he has to solve is an **LP** (Linear Program)!
The synchronizing function on practical examples

- Cerny’s automaton
The synchronizing function on practical examples

• Kari’s automaton
The synchronizing function on practical examples

- Roman’s automaton
A few first results

- **Theorem:** The players can communicate their policies

- A procedure allowing to compute the function pretty fast in practice

- **Proposition:** It doesn’t help the mouse to allow her to take shorter products

- **Proposition:** there is always an optimal policy for the mouse with at most \(n \) different columns (\(n \) is the number of nodes)

- **Theorem:** If \(k(t)<1 \), then \(k(t+(n-1))>k(t) \)

- Means « \(k(t) \) cannot stagnate too long »
Definition: The synchronizing probability function $k(t)$ of the automaton is the smallest probability the cat can ensure to get caught, whatever strategy (of length t) the mouse chooses.

\[
\min_{p,k} k \\
\text{s.t. } pA \leq k e^T \quad \forall A \in \Sigma^{\leq t} \\
e p^T = 1 \\
p \geq 0.
\]

The problem he has to solve is an LP (Linear Program)!
A few first results

- **Theorem:** The players can communicate their policies.

- A procedure allowing to compute the function pretty fast in practice.

- **Proposition:** It doesn’t help the mouse to allow her to take shorter products.

- **Proposition:** There is always an optimal policy for the mouse with at most \(n \) different rows (\(n \) is the number of nodes).

- **Theorem:** If \(k(t) < 1 \), then \(k(t + (n-1)) > k(t) \).

 - Means « \(k(t) \) cannot stagnate too long ».
The synchronizing function on practical examples

- Cerny’s automaton

Theorem: If $k(t) < 1$, then $k(t + (n-1)) > k(t)$

- Means « $k(t)$ cannot stagnate too long »
Proof of the theorem

Theorem: If \(k(t) < 1 \), then \(k(t + (n-1)) > k(t) \)

Proof: suppose \(k(t) = k(t+1) \)

- Look at the polytope \(P_t \) of optimal solutions
 \[
 P_t = \{ p : A_0 A_1 A_2 \ldots A_{t-1} p \leq k \}
 \]

- **Lemma:** \(P_{t+1}' \) is in \(P_t' \)

- **Lemma:** \(P_{t+1}' \) is different from \(P_t' \)
 Proof: if not, then \(P_{t+2}' = P_{t+1}' \)

- **Lemma:** This implies that \(\text{dim } P_{t+1}' < \text{dim } P_t' \)

- Since \(\text{dim } P_t < n-1 \), after at most \(n-1 \) steps it cannot decrease anymore
A conjecture

• **Observation:** At some fixed times, the value of the function is always higher (or equal) than Černý’s automaton

\[t = 1 + (n+1) \cdot i \]

• **Conjecture:** It is always the case

For any synchronizing automaton and for any \(j \geq 1, j \leq n - 1, \)

\[k(1 + (j - 1)(n + 1)) \geq j/(n - 1). \]

This conjecture is stronger than Černý’s conjecture.
For a synchronizing automaton Σ, the *triple rendezvous time* $T_{3,\Sigma}$ is the length of the shortest word mapping three states to a single one.
Conjectures

Conjecture:

For any synchronizing automaton and for any \(j \geq 1, j \leq n - 1, \)

\[
k(1 + (j - 1)(n + 1)) \geq j / (n - 1).
\]

An easier conjecture on the triple rendezvous time:

For any synchronizing automaton, \(T_3 \leq n + 2. \)
Outline

• Synchronizing automata, Cerny’s conjecture, and previous approaches

• The synchronizing probability function and previous results

• New results:
 – a new upper bound (on a related quantity)
 – a counterexample

• Discussion
First bound on the TRT

For any synchronizing automaton,

Each pair of states can be mapped to a single state with a word of length at most $\frac{n(n-1)}{2}$.

In a synchronizing automaton Σ with n states,

$T_{3,\Sigma} \leq \frac{n(n-1)}{2} + 1$.

A better bound using the SPF

We obtain a better bound on the triple rendezvous time:

\[T_3 \leq \sum_{s=0}^{n-1} (\lfloor (n - s)/2 \rfloor + 1) = \frac{n(n + 4)}{4} - \frac{n \mod(2)}{4}. \]
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!

Example for $t=1$:
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles.
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles.
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles.
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles.
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles.

- $n_1 \ll \text{singleton}$ (Here, $n_1 = 1$)
- A pair
- An odd cycle
First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles.

$n_1 \ll \text{singleton} \quad (n_1=1 \text{ here})$

A pair

An odd cycle

Lemma: The SPF is equal to $2/(n+n_1)$ (when the optimal decomposition is known). In this case the dimension of the optimal primal solutions P_t is the number of pairs.
The synchronizing function on practical examples

- Cerny’s automaton

\[n_1 \ll \text{singleton} \] (\(n_1=1\) here)
The synchronizing function on practical examples

- Cerny’s automaton

If \(n - 2 \) singletons,

If \(n - 3 \) singletons,

If \(n - 4 \) singletons,

\(n_1 \leftarrow \text{singleton} \) (\(n_1 = 1 \) here)
First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles.

$n_1 \ll \text{singleton} \quad (n_1=1 \text{ here})$

Lemma: The SPF is equal to $2/(n+n_1)$ (when the optimal decomposition is known). In this case the dimension of the optimal primal solutions P_t is the number of pairs.
A better bound using the SPF

First observation: we can represent $A(t)$ on a graph!

Lemma: There is always an optimal solution for the mouse with a disconnected union of singletons, pairs, and odd cycles

Lemma: The SPF is equal to $\frac{2}{n+n_1}$ (when the optimal decomposition is known). In this case the dimension of the optimal primal solutions P_t is the number of pairs.

Lemma: the dimension of the optimal primal Solutions has to decrease If $k(t)$ remains constant.
A better bound using the SPF

Theorem: in a synchronizing automaton with n states,

$$T_3 \leq \sum_{s=0}^{n-1} \left(\left\lfloor (n - s)/2 \right\rfloor + 1 \right) = \frac{n(n + 4)}{4} - \frac{n \ mod(2)}{4}.$$

...
A better bound using the SPF

Theorem: in a synchronizing automaton with \(n \) states,

\[T_3 \approx O(n^2/6.4\ldots) \]
Outline

- Synchronizing automata, Cerny’s conjecture, and previous approaches
- The synchronizing probability function and previous results
- New results:
 - a new upper bound (on a related quantity)
 - a counterexample
- Discussion
A conjecture

- Observation: At some fixed times, the value of the function is always higher (or equal) than Cerny’s automaton

Conjecture: It is always the case

For any synchronizing automaton and for any $j \geq 1$, $j \leq n - 1$,

$$k(1 + (j - 1)(n + 1)) \geq j/(n - 1).$$
Observation: At some fixed times, the value of the function is always higher (or equal) than Cerny’s automaton.

An easier conjecture on the triple rendezvous time:

For any synchronizing automaton, $T_3 \leq n + 2$.
Counter example

Automaton with 9 states, $k(11)=2/9$ and $T_3=12 = n+3$

Contradicts both conjectures

An easier conjecture on the triple rendezvous time:

For any synchronizing automaton, $T_3 \leq n + 2$.
Comparison of the SPF

Counterexample in black
Černý’s automaton with 9 states in dashed
Family extension

Extension of the family to 11 and 13 states

It can be extended to any odd number
Outline

• Synchronizing automata, Cerny’s conjecture, and previous approaches

• The synchronizing probability function and previous results

• New results: a counterexample and a new upper bound (on a related quantity)

• Discussion
Conclusion and future work

- **Future work:** Plenty of things!
 - What with **other automata:** non-synchronizing automata, Non-deterministic...
 - **Particular cases**
 - Improve the bound on $T_3 \rightarrow O(n)\ ? \quad n+3 < B < n^2/6.4$
 - Use our concepts to **generate slowly synchronizing automata**

- **Applications!**

- Our approach tried to **connect** this longstanding problem with other fields of mathematics.
 The connection seems to bear some sense and suggests new questions.
Questions?

More on:
http://perso.uclouvain.be/raphael.jungers