Higher spherical polynomials and holonomic systems

Tomoyoshi Ibukiyama

Osaka University

August 20, 2012, 9:50–10:30 Shanghai Jiao Tong University, Shanghai.
Contents

1. Gegenbauer Polynomials
2. Generalization: Invariant harmonic polynomials
3. Problems today
4. Uniqueness
5. Generating function
6. Explicit formula
7. Measure
8. Holonomic system
9. Constantine hypergeometric series
10. Spherical functions on Grassmann manifolds
11. Motivation from Automorphic forms
Review on Gegenbauer polynomials

For integers $d > 2$, $\nu \geq 0$ and variable vectors $x = (x_i)_{1 \leq i \leq d}$ and $y = (y_i)_{1 \leq i \leq d}$, we consider polynomials $\tilde{P}_\nu(x, y)$ in $2d$ variables which satisfy the following three conditions.

(i) $\tilde{P}_\nu(xg, yg) = \tilde{P}_\nu(x, y)$ for any $g \in O(d)$.

(ii) $\tilde{P}_\nu(ax, by) = (ab)^\nu \tilde{P}_\nu(x, y)$ for any $a, b \in \mathbb{C}$, i.e. homogeneous of degree ν for each x, y.

(iii) $\tilde{P}_\nu(x, y)$ is harmonic for each x and y.

By (i) and (ii), $\tilde{P}_\nu(x, y)$ is determined by $\tilde{P}_\nu(x, 1)$, in addition we have $\tilde{P}_\nu(xg_1, 1) = \tilde{P}_\nu(x, 1)$ for $g_1 \in O(d - 1)$. So $\tilde{P}(x, 1)$ is the spherical function of class one representation of $O(d)$. In this case, we can write $\tilde{P}_\nu(x, y) = P_\nu((x, y), n(x)n(y))$ by a polynomial $P_\nu(*, *)$ in two variables. The polynomial $P_\nu(t, 1)$ is the so-called Gegenbauer polynomial. When $d = 3$, this is the Legendre polynomials.
Interesting facts on Gegenbauer polynomials

We review what is known for Gegenbauer polynomials. We fix d.

(1) For each ν, the polynomial \tilde{P}_ν or associated P_ν which satisfy (i), (ii), (iii) is determined uniquely up to constant.

(2) They satisfy the following generating function.

$$\frac{1}{(1 - 2tu + (rs)u^2)^{(d-2)/2}} = \sum_{\nu=0}^{\infty} P_\nu(t, rs)u^\nu,$$

where $r = (x, y)$, $r = n(x)$, $s = n(y)$, and u is an indeterminant.

(3) The polynomials $P_\nu(t, 1)$ form a complete set of orthogonal polynomials with respect to the measure

$$\int_{-1}^{1} f(t)g(t)(1 - t^2)^{(d-3)/2} dt.$$
(4) The polynomial $P_\nu(t, 1)$ satisfies the following differential equation of Fuchsian type:

$$(1 - t^2) \frac{d^2 y}{dt^2} - (d - 1)t \frac{dy}{dt} + \nu(\nu + d - 2)y = 0.$$

(5) We have

$$P_\nu(t, 1) = \frac{(\nu + d - 3)!}{\nu!(d - 3)!} \, _2F_1 \left(\nu + d - 2, -\nu; \frac{d - 1}{2}; \frac{1 - t}{2} \right).$$

where $_2F_1$ is the hypergeometric function defined by

$$\, _2F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{n!(c)_n} x^n$$

and $(\alpha)_n = \alpha(\alpha + 1) \cdots (\alpha + n - 1)$.
For fixed d, n with $d > 2n$, we consider $n \times d$ matrices $X = (x_{i\mu})$, $Y = (y_{i\mu})$ of variables. For each integer $\nu \geq 0$, we consider polynomials $\tilde{P}_\nu(X, Y)$ which satisfy the following three conditions.

1. $\tilde{P}_\nu(Xg, Yg) = \tilde{P}_\nu(X, Y)$ for all $g \in O(d)$.
2. $\tilde{P}_\nu(AX, BY) = \det(AB)^\nu \tilde{P}_\nu(X, Y)$ for any $A, B \in GL(n)$.
3. The polynomial \tilde{P}_ν is pluri-harmonic with respect to each X and Y, that is,

$$\Delta_{ij}(X)\tilde{P}_\nu = \Delta_{ij}(Y)\tilde{P}_\nu = 0,$$

where

$$\Delta_{ij}(X) = \sum_{\nu=1}^{d} \frac{\partial^2}{\partial x_{i\mu} \partial x_{j\mu}}, \quad \Delta_{ij}(Y) = \sum_{\nu=1}^{d} \frac{\partial^2}{\partial y_{i\mu} \partial y_{j\mu}}.$$

By the condition (1), we have $\tilde{P}_\nu(X, Y) = P(X^t X, Y^t Y, X^t Y)$ for some polynomial $P(R, S, T)$, where R, S, T are $n \times n$ matrices of variables and R, S are symmetric.
Problems

Give the same theory for general n as for Gegenbauer polynomials.

- Uniqueness of P_ν for each ν up to constant.
- Generating function for $n = 2$ and some explicit description for general n.
- Natural measure.
- Holonomic system that the radial part Q_ν of P_ν satisfies.
- Connection with Constantine-Muirhead generalized hypergeometric functions.

Today we omit more general setting we have, containing works with Don Zagier.
Uniqueness

The uniqueness of P_ν up to constant for each ν is proved by representation theory. We denote by $H(n, d)$ the space of pluri-harmonic polynomials $P(X)$ in components of $n \times d$ matrices. Then $GL(n) \times O(d)$ acts on $H(n, d)$ by $P(X) \rightarrow P(AXg)$. ($A \in GL(n)$, $g \in O(d)$). The decomposition of this representation on $H(n, d)$ is known by Kashiwara and Vergne and the multiplicity is one for each irreducible representation. We denote by ρ_ν the representation given by the space

$$\{P(X) \in H(n, d); P(AX) = \det(A)^\nu P(X)\}.$$

Our $\tilde{P}_\nu(X, Y)$ is in the representation space of the irreducible representation $\rho_\nu \otimes \rho_\nu$ of $(GL(n) \times O(d))^2$ and invariant by the action of $O(d) \subset O(d) \times O(d)$. This is unique up to constant by general theory.
Generating function for $n = 2$

When $n = 2$ and d fixed, the polynomials $P_{\nu}(R, S, T)$ are given by the following generating function (up to constant):

$$
\frac{1}{R^{(d-5)/2} \sqrt{\Delta_0^2 - 4f_3 u^2}} = \sum_{\nu=0}^{\infty} P_{\nu}(R, S, T) u^\nu,
$$

where we put

$$
f_1 = \det(T), \quad f_2 = \det(RS), \quad f_3 = \det \begin{pmatrix} R & T \\ tT & S \end{pmatrix}
$$

and

$$
\Delta_0 = 1 - 2f_1 u + f_2 u^2
$$

$$
R = (\Delta_0 + \sqrt{\Delta_0^2 - 4f_3 u^2})/2.
$$

We have no results for $n \geq 3$ on generating functions.
A formula for P_{ν} for general n

For general n, we assume that $d > 2n$. For $n \times d$ matrices $X = (x_{i\mu})$, $Y = (y_{i\mu})$ of variables, we write

$$
\Delta_{ij}(X, Y) = \sum_{\mu=1}^{d} \frac{\partial^2}{\partial x_{i\mu} \partial y_{j\mu}}.
$$

By $R = X^t X$, $S = Y^t Y$ and $T = X^t Y$, we can rewrite $\Delta_{ij}(X, Y)$ by derivations with respect to r_{ij}, s_{ij} and t_{ij} at most of order two.

Theorem

For each $\nu \geq 0$, our polynomial $P_{\nu}(R, S, T)$ is given by the following formula up to constant:

$$
P_{\nu}(R, S, T) = \det(RS)^{(d-n+1)/2+\nu-1} \det(\Delta_{ij}(X, Y))^\nu \det(RS)^{(n+1-d)/2}
$$

Keypoint: To prove RHS is a polynomial (joint with Y. Hyogo.)
An invariant measure of the action of $GL(n) \times O(d)$ on the space $H(n, d)$ of pluri-harmonic polynomials in $X \in M_{n,d}(\mathbb{R})$ is given by

$$\int_{M_{n,d}(\mathbb{R})} e^{-Tr(X^tX)} F(X) dX.$$

Since $\widetilde{P}_\nu(X, Y) \in H(n, d) \otimes H(n, d)$, we take the double integral of the above and by rewriting we get the natural inner product in our case. This is given for $F(R, S, T)$ and $G(R, S, T)$ by

$$(F, G) = \int_{S_{2n}} F^\top G \det \begin{pmatrix} R & T \\ t^T & S \end{pmatrix}^{(d-2n-1)/2} dR dS dT,$$

where S_{2n} is the set of $2n \times 2n$ positive definite matrices. For any $\nu \neq \mu$, we have $(P_\nu(R, S, T), P_\mu(R, S, T)) = 0$.
For our $P_\nu(R, S, T)$, we have

$$P_\nu(R, S, T) = \det(RS)^{\nu/2} P_\nu(1_n, 1_n, R^{-1/2} TS^{-1/2})$$

$$= \det(RS)^{\nu/2} P_\nu(1_n, 1_n, P_1(R^{-1/2} TS^{-1/2}) P_2)$$

for any orthogonal polynomials P_1, P_2. So denoting by λ_i the spectres of $R^{-1/2} TS^{-1/2}$ in $O(d) \setminus M_n(\mathbb{R}) / O(d)$, we have

$$P_\nu(R, S, T) = \det(RS)^{\nu/2} Q_\nu(\lambda_1, \ldots, \lambda_n)$$

for some polynomial Q_ν in $\lambda_1, \ldots, \lambda_n$. (Actually Q_ν for even ν or $Q_\nu / \prod_{i=1}^n \lambda_i$ for odd ν is a symmetric polynomial in $\lambda_1^2, \ldots, \lambda_n^2$.)
We can interpret the condition of pluri-harmonicity as a system of n differential operators on the radial part. We define

$$\mathbb{D}_k = (1 - \lambda_k^2) \frac{\partial^2}{\partial \lambda_k^2} + \left(-(d - 2n + 1) \lambda_k + \sum_{l \neq k} \frac{\lambda_k(1 - \lambda_k^2)}{\lambda_k^2 - \lambda_l^2} \right) \frac{\partial}{\partial \lambda_k}$$

$$+ \sum_{l \neq k} \frac{(1 - \lambda_l^2) \lambda_l}{(\lambda_l^2 - \lambda_k^2)} \frac{\partial}{\partial \lambda_l} + \nu(\nu + d - n - 1) \quad (1 \leq k \leq n).$$

and regard this as the generalized Gegenbauer differential equation:

Theorem

The polynomial $Q_\nu(\lambda_1, \ldots, \lambda_n)$ is a polynomial solution of the system

$$\mathbb{D}_k Q = 0 \quad (1 \leq k \leq n).$$
Holonomic system

Theorem

For any complex parameters \(d \) and \(\nu \), the system of differential equations

\[
\mathbb{D}_k Q = 0 \quad (1 \leq k \leq n)
\]

is a holonomic system of rank \(2^n \).

We do not review the definition of holonomic system here, but this theorem includes the following claim.

At any points \((\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n\) outside the singular locus \(\lambda_k \neq \pm \lambda_l \) and \(\lambda_k = \pm 1 \), the linear space of solutions of this system is exactly \(2^n \)-dimensional.

This is interesting since examples of explicitly written holonomic system is rather rare.
Constantine hypergeometric series

For any $a \in \mathbb{C}$ and for any partition $\kappa = (k_1, \ldots, k_n)$ of $k \in \mathbb{Z}_{\geq 0}$ with $k_1 \geq k_2 \geq \cdots \geq k_n \geq 0$ and $k = k_1 + \cdots + k_n$, we write

$$(a)_\kappa = \prod_{i=1}^{n} (a - (i - 1)/2)_{k_i}.$$

We denote by $C_\kappa(z)$, $(z = (z_1, \ldots, z_n))$, the zonal spherical polynomial on $GL(n)/O(n)$ for the partition parameter κ. Then for complex parameters a, b, c, we define generalized hypergeometric function by

$$2F_1(a, b, c; z) = \sum_\kappa \frac{(a)_\kappa (b)_\kappa}{(c)_\kappa} \frac{C_\kappa(z)}{(k_1 + \cdots + k_n)!}.$$

where κ runs over the partitions of any $k \geq 0$ at most into n parts.
Muirhead theorem on differential equations

We define differential operators \(\tilde{D}_i(a, b, c) = \tilde{D}_i \) in \((z_1, \ldots, z_n)\) by

\[
\tilde{D}_i = z_i (1 - z_i) \frac{\partial^2}{\partial z_i^2} + \left(c - \frac{n - 1}{2} - (a + b + 1 - \frac{n - 1}{2})z_i \right) \frac{\partial}{\partial z_i} + \frac{1}{2} \sum_{j \neq i} \frac{z_i (1 - z_i)}{z_i - z_j} \frac{\partial}{\partial z_j} - \frac{1}{2} \sum_{j \neq i} \frac{z_j (1 - z_j)}{z_i - z_j} \frac{\partial}{\partial z_j}.
\]

Theorem (Muirhead)

The series \(_2F_1(a, b; c; z) \) is the unique solution of the system

\[
\tilde{D}_i(a, b, c)f = abf \quad (1 \leq i \leq n)
\]

such that

1. \(f \) is holomorphic near \(z = 0 \) and \(f(0, \ldots, 0) = 1 \),
2. \(f(z_1, \ldots, z_n) \) is symmetric with respect to the variables \(z_i \).
Relation to our polynomials

Let d, n, ν be positive integers. If we change $z_i = \lambda_i^2$, $a = -\nu/2$, $b = (\nu + d - n - 1)/2$, $c = n/2$, then we have

$$D_i = 4(\tilde{D}_i(a, b, c) - ab).$$

We denote by $Q_\nu(\lambda_1, \ldots, \lambda_n)$ our polynomials as before. We have

Theorem

(1) If ν is even, then we have

$$Q_\nu(\lambda_1, \ldots, \lambda_n) = 2F_1\left(-\frac{\nu}{2}, \frac{1}{2}(\nu + d - n - 1); \frac{n}{2}; (\lambda_1^2, \ldots, \lambda_n^2)\right).$$

(2) If ν is odd, then we have

$$\frac{Q_\nu(\lambda_1, \ldots, \lambda_n)}{\lambda_1 \cdots \lambda_n} = 2F_1\left(-\frac{\nu - 1}{2}, \frac{\nu + d - n}{2}; \frac{n}{2} + 1; (\lambda_1^2, \ldots, \lambda_n^2)\right).$$
Spherical functions on Grassmannian manifolds

We assume \(d > 2n \). The oriented Grassmann manifold consisting of \(n \) dim. oriented subspaces in the fixed \(d \)-dim. real vector space is identified with \(G_{d,n}^0 = (SO(n) \times O(d - n)) \backslash O(d) \). For each irreducible subrepresentation of \(O(d) \) on \(L^2(G_{d,n}^0) \), we have the unique function up to constant which is bi-\(SO(n) \times O(d - n) \) invariant. This is called zonal spherical. We have

\[
L^2(G_{d,n}^0)_{SO(n) \times O(d-n)} \cong L^2(G_{d,n}^0 \times G_{d,n}^0)^{O(d)}.
\]

If we write \(\widetilde{P}_\nu(X, Y) = P_\nu(X^t X, Y^t Y, X^t Y) \) and take a natural restriction of a function \(\widetilde{P}_\nu(X, Y) \) on \(M_{d,n} \times M_{d,n} \) to \(G_{d,n}^0 \times G_{d,n}^0 \), then this gives the zonal spherical function corresponding to the irreducible representation of \(O(d) \) with Young diagram parameter \((\nu, \ldots, \nu, 0, \ldots, 0; (-1)^{n\nu})\).
Motivation

We consider two bounded symmetric domains: $\Delta \subset D$, and biholomorphic automorphism groups: $Aut(\Delta) \subset Aut(D)$.

V: finite dim. vector space over \mathbb{C}. Automorphy factor J_Δ in $GL(V)$ and J_Δ in $GL(1)$, i.e. $F|_{J\Delta}[g] = J_\Delta(g, Z)^{-1}F(gZ)$ (for $F : \Delta \to V$) is an action. Let \mathbb{D} be a linear V-valued differential operator with constant coefficients satisfying

Condition on \mathbb{D}

\[
\begin{array}{ccc}
Hol(D, \mathbb{C}) & \xrightarrow{\mathbb{D}} & Hol(D, V) \\
\downarrow |_{J_D}[g] & & \downarrow |_{J_\Delta}[g] \\
Hol(D, \mathbb{C}) & \xrightarrow{\text{Res.}} & Hol(\Delta, V)
\end{array}
\]

$g \in Aut(\Delta) \subset Aut(D)$.

Characterization: We have $\mathbb{D} = P\left(\frac{\partial}{\partial z_1}, \ldots, \frac{\partial}{\partial z_n}\right)$ ($Z = (z_i) \in D$) with invariant harmonic polynomial P of similar sort.
Why such \mathcal{D} is important?

We denote by H_n the Siegel upper half space of degree n:

$$H_n = \{ Z = X + iY \in M_n(\mathbb{C}); Z = \begin{bmatrix} X \\ Y \end{bmatrix}, \text{Im}(Z) > 0 \}.$$

The domains $\Delta = H_n \times H_n \subset H_{2n}$ and the automorphy factor \det^k and the target $\det^{k+\nu}$ are the cases we treated today and our P_ν gives the above \mathcal{D}. Such \mathcal{D} is important since

1. We can calculate the special values of standard L functions of automorphic forms at various critical points by using \mathcal{D}.

2. Starting from given automorphic forms, by using \mathcal{D}, we can construct new automorphic forms, which are often difficult to construct by any other methods.

3. The differential operators \mathcal{D} are characterized by certain polynomials and these polynomials are sources of new special functions.

In this talk, we emphasized the viewpoint (3) above.