A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph

Jin-Long Shu*, Yuan Hong, Kai Wen-Ren

Department of Mathematics, East China Normal University, Shanghai 200062, China

Received 20 September 2000; accepted 12 October 2001

Submitted by R.A. Brualdi

Abstract

Let \(G \) be a simple connected graph with \(n \) vertices. The largest eigenvalue of the Laplacian matrix of \(G \) is denoted by \(\mu(G) \). Suppose the degree sequence of \(G \) is \(d_1 \geq d_2 \geq \cdots \geq d_n \). In this paper, we present a sharp upper bound of \(\mu(G) \)

\[
\mu(G) \leq d_n + \frac{1}{2} + \sqrt{\left(d_n - \frac{1}{2} \right)^2 + \sum_{i=1}^{n} d_i (d_i - d_n)},
\]

the equality holds if and only if \(G \) is a regular bipartite graph. © 2002 Published by Elsevier Science Inc.

AMS classification: 05C50

Keywords: Line graph; Degree sequence; Adjacency spectral radius; Laplacian spectral radius

1. Introduction

Let \(G = (V, E) \) be a simple connected graph with vertex set \(V = \{v_1, v_2, \ldots, v_n\} \) and edge set \(E = \{e_1, e_2, \ldots, e_m\} \). We denote the line graph of \(G \) by \(L_G \). Let \(A(G) \) be the adjacency matrix of graph \(G \). Denoting the degree of \(v_i \in V(G) \) by \(d_i, d(v_i) \) or \(d_G(v_i) \), \(d_1 \geq d_2 \geq \cdots \geq d_n \). \(D = D(G) = \text{diag}\{d_1, d_2, \ldots, d_n\}, \) \(L = L(G) = \)

* Research supported by NNSF of China No. 19971027, Foundation of University Key Teacher by the Ministry of Education, P.R. China and Shanghai Priority Academic Discipline.

* Corresponding author.

E-mail addresses: jlshu@math.ecnu.edu.cn (J.-L. Shu), yhong@math.ecnu.edu.cn (Y. Hong), kwen-ren@math.ecnu.edu.cn (K. Wen-Ren).
$D(G) - A(G)$, $K = K(G) = D(G) + A(G)$. Then $L(G)$ is the Laplacian matrix of G. Let $Q = Q(G)$ be a vertex-edge incidence matrix of G. Thus

$$K(G) = D(G) + A(G) = QQ^T \quad \text{and} \quad Q^TQ = 2I_m + A(L_G).$$

The adjacency spectral radius, $\rho(G)$, of G is the largest eigenvalue of $A(G)$. The Laplacian spectral radius, $\mu(G)$, of G is the largest eigenvalue of $L(G)$. Let μ' be the largest eigenvalue of $K(G)$.

Merris [1] pointed out

$$\mu(G) \leq \mu' = 2 + \rho(L_G),$$

and the equality holds if G is a bipartite graph. In this paper, we first prove that the equality holds if and only if G is a bipartite graph.

There are many known upper bounds for $\mu(G)$.

In 1985, Anderson and Morley [2] showed that

$$\mu(G) \leq \max \{d(u) + d(v) | (u, v) \in E(G)\}.$$

In 1997, Li and Zhang [4] gave an upper bound of $\mu(G)$

$$\mu(G) \leq 2 + \sqrt{(r - 2)(s - 2)},$$

where $r = \max\{d(u) + d(v) | (u, v) \in E(G)\}$ and suppose $(x, y) \in E(G)$ satisfies $d(x) + d(y) = r$, $s = \max\{d(u) + d(v) | (u, v) \in E(G) - (x, y)\}$.

In 1998, Merris [3] gave that

$$\mu(G) \leq \max \{d(v) + m(v) | v \in V(G)\},$$

where $m(v)$ is the average of the degrees of the vertices adjacent to v. $d(v)m(v)$ is the “2-degree” of v.

In 1998, Li and Zhang [5] proved that

$$\mu(G) \leq \max \left\{ \frac{d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))}{d(u) + d(v)} \right\}.$$

In this paper, using the degree sequence (d_1, d_2, \ldots, d_n), we give a sharp upper bound

$$\mu(G) \leq d_n + \frac{1}{2} + \sqrt{\left(d_n - \frac{1}{2}\right)^2 + \sum_{i=1}^{n} d_i(d_i - d_n)},$$

the equality holds if and only if G is a regular bipartite graph.

The terminology not defined here can be found in [7].

2. Lemmas and main results

Lemma 1. Let B be a real symmetric nonnegative irreducible matrix and λ be the largest eigenvalue of B. $Z \in \mathbb{R}^n$. If $Z^T B Z = \lambda$ and $\|Z\| = 1$, then $BZ = \lambda Z$.

Proof. Since B is a real symmetric matrix, we can denote its eigenvalues by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, w_i is eigenvector corresponding to λ_i $(i = 1, 2, \ldots, n)$ such that $W = (w_1, w_2, \ldots, w_n)$ is an orthogonal matrix and $\|W\| = 1$. Thus

$$W^tBW = W^{-1}BW = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_n\} = T,$$

$$B = WTW^{-1} = WTW^t.$$

Since $Z^tBZ = \lambda$, we have

$$\lambda = Z^tBZ = Z^tWTVZ = S^tTS = \sum_{i=1}^n \lambda_i s_i^2 \leq \sum_{i=1}^n \lambda_1 s_i^2 = \lambda_1 = \lambda,$$

where $S = (s_1, s_2, \ldots, s_n)^t = W^tZ$, $\|S\| = \|WTW^t\| = 1$.

Since B is a nonnegative irreducible matrix, using the Perron–Frobenius’ theorem, we know λ is a unique largest eigenvalue of B. So

$$s_2 = s_3 = \cdots = s_n = 0, \quad s_1 = \pm 1, \quad Z = WS = \pm w_1.$$

Therefore

$$BZ = \lambda Z,$$

i.e. Z is an eigenvector of B belonging to λ. □

Lemma 2. If G is a connected graph, then

$$\mu(G) \leq 2 + \rho(L_G),$$

the equality holds if and only if G is a bipartite graph.

Proof. Since $\mu' = 2 + \rho(L_G)$, we need only to prove $\mu \leq \mu'$.

Let $Y = (y_1, y_2, \ldots, y_n)^t \in \mathbb{R}^n$, $\|Y\| = 1$. Let $X = (x_1, x_2, \ldots, x_n)^t \in \mathbb{R}^n$ be a unit eigenvector of L belonging to μ and $X' = (x'_1, x'_2, \ldots, x'_n)^t \in \mathbb{R}^n$ be a unit eigenvector of K belonging to μ'. Let $|X| = (|x_1|, |x_2|, \ldots, |x_n|)^t$.

(1) First, we prove that $\mu \leq \mu'$.

$$\mu = \max Y^tLY$$

$$= \max Y^t(D - A)Y$$

$$= \max \sum_{v_i \sim v_j, i < j} (y_i - y_j)^2$$

$$= X^t(D - A)X$$

$$= \sum_{v_i \sim v_j, i < j} (x_i - x_j)^2$$

and

$$\mu' = \max Y^tKY$$

$$= \max Y^t(D + A)Y$$
\[= \max_{v_i \sim v_j, \ i < j} (y_i + y_j)^2\]

\[= X^t (D + A) X'\]

\[= \sum_{v_i \sim v_j, \ i < j} (x'_i + x'_j)^2.\]

Thus

\[\mu = \sum_{v_i \sim v_j, \ i < j} (x_i - x_j)^2\]

\[\leq \sum_{v_i \sim v_j, \ i < j} (|x_i| + |x_j|)^2\]

\[= |X|^t (D + A) |X|\]

\[\leq \mu'. \quad (\ast)\]

(2) When \(\mu = \mu'\), all inequalities (\(\ast\)) must be equalities. By Lemma 1 and the equality

\[|X|^t (D + A) |X| = \mu',\]

we know \(|X|\) is an eigenvector of \(D + A\) belonging to \(\mu'\). So \(|X| = \pm X'\). Using Perron–Frobenius’ theorem again, we have

\[X' > 0, \quad |X| = X', \quad \text{and} \quad |x_i| > 0 \ (i = 1, 2, \ldots, n).\]

Since

\[\sum_{v_i \sim v_j, \ i < j} (x_i - x_j)^2 = \sum_{v_i \sim v_j, \ i < j} (|x_i| + |x_j|)^2\]

and

\[(x_i - x_j)^2 \leq (|x_i| + |x_j|)^2,\]

hence

\[(x_i - x_j)^2 = (|x_i| + |x_j|)^2\]

when \(v_i \sim v_j\). Therefore \(x_i x_j < 0\) if \(v_i \sim v_j\).

Let \(V_1 = \{v_i \mid x_i > 0\}, V_2 = \{v_j \mid x_j < 0\}\). For each edge \(e = (v_i, v_j)\), we have \(x_i x_j < 0\). One of the vertices of edge \(e\) is in \(V_1\), the other is in \(V_2\). So \(G\) is a bipartite graph.

(3) From Merris’ result [1], when \(G\) is a bipartite graph, we get \(u = u'\). \(\square\)

Lemma 3 [6]. If \(G\) is a connected simple graph, then

\[\rho(G) \leq \frac{d_n - 1 + \sqrt{(d_n + 1)^2 + 4(2m - d_n n)}}{2},\]

the equality holds if and only if \(G\) is a regular graph or a bidegreed graph in which each vertex is of degree either \(d_n\) or \(n - 1\).
Let L_G be the line graph of G. L_G has n' vertices, m' edges and minimal degree d' in L_G, where

$$d' = \min \{d_G(u) + d_G(v) - 2 \mid uv \in E(G)\}.$$

Lemma 4. Let G be a connected bipartite graph and L_G has the minimal degree $d' = 2d_n - 2$.
1. If L_G is a regular graph, then G is a regular bipartite graph.
2. L_G is not a bidegreed graph in which each vertex is of degree either d' or $n' - 1$.

Proof. 1. Let (V_1, V_2) be a bipartition of graph G. Since G is a connected graph, L_G is a connected graph too. From the fact that L_G is a connected regular graph and G is a connected bipartite graph, we can get that G is a semiregular graph. We assume that $d_G(v_i) = r$ when $v_i \in V_1$ and $d_G(u_j) = s$ when $u_j \in V_2$. Without loss of generality, we suppose $r \geq s$. Hence $d_n = s$, $d' = r + s - 2 = 2d_n - 2$ and $r + s = 2d_n$, $r = s = d_n$. So G is a regular bipartite graph.

2. If there exists G such that L_G is a bidegreed graph in which each vertex is of degree either d' or $n' - 1$. Suppose $e = (x, y) \in E(G)$, $e \in V(L_G)$ and $d_{L_G}(e) = n' - 1$. So each edge of G must have a same vertex with edge xy. Hence, each vertex of G must be adjacent with x or y. Because G is a bipartite graph, vertices u_j ($j = 1, 2, \ldots, r$) adjacent with x cannot be adjacent with y, vertices v_i ($i = 1, 2, \ldots, s$) adjacent with y cannot be adjacent with x. Hence G is only isomorphic to bistar graph $G(r, s)$ (G cannot be isomorphic to star graph since the line graph of star graph is complete graph). We assume $r \geq s$. Therefore $d_n = 1$, $d' = s \geq 1$, and $d' \neq 2d_n - 2$. It is contradictory and part 2 is proved. □

Lemma 5 [6]. $f(x) = x - 1 + \sqrt{(x + 1)^2 + 4(2m - xn)}$ is a decreasing function of x for $1 \leq x \leq n - 1$, where $n - 1 \leq m \leq n(n - 1)/2$ and $2m \geq xn$.

Theorem 1. If G is a connected simple graph, then

$$\mu(G) \leq d_n + \frac{1}{2} + \sqrt{\left(d_n - \frac{1}{2}\right)^2 + \sum_{i=1}^{n} d_i(d_i - d_n)},$$

the equality holds if and only if G is a regular bipartite graph.
Proof. 1. From the fact that G and L_G are connected graphs and Lemma 3, we have

$$\rho(L_G) \leq \frac{d' - 1 + \sqrt{(d' + 1)^2 + 4(2m' - d'n')}}{2}.$$

We know

$$n' = m = \frac{1}{2} \sum_{i=1}^{n} d_i, \quad 2m' = \sum_{i=1}^{n} d_i(d_i - 1), \quad d' \geq 2d_n - 2.$$

By Lemma 5, we get

$$\rho(L_G) \leq d_n - \frac{3}{2} + \sqrt{(d_n - \frac{1}{2})^2 + \sum_{i=1}^{n} d_i(d_i - d_n)}.$$

Using Lemma 2, we obtain

$$\mu(G) \leq 2 + \rho(L_G) \leq d_n + \frac{1}{2} + \sqrt{(d_n - \frac{1}{2})^2 + \sum_{i=1}^{n} d_i(d_i - d_n)}.$$

2. When the equality holds, we have

$$\mu(G) = 2 + \rho(L_G) = d_n + \frac{1}{2} + \sqrt{(d_n - \frac{1}{2})^2 + \sum_{i=1}^{n} d_i(d_i - d_n)}$$

and $d' = 2d_n - 2$.

By Lemma 2 and $\mu(G) = 2 + \rho(L_G)$, we know G is a connected bipartite graph.

By Lemma 3 and

$$2 + \rho(L_G) = d_n + \frac{1}{2} + \sqrt{(d_n - \frac{1}{2})^2 + \sum_{i=1}^{n} d_i(d_i - d_n)},$$

we get L_G is a regular graph or a bidegreed graph in which each vertex is of degree either d' or $n' - 1$.

By Lemma 4, G is only isomorphic to a regular bipartite graph.

3. If G is a regular bipartite graph, $d_i = d_n = r$, L_G is a regular graph and $d' = 2r - 2$. $\rho(L_G) = 2r - 2$, $\mu(G) = 2 + \rho(L_G) = 2r$.

$$d_n + \frac{1}{2} + \sqrt{(d_n - \frac{1}{2})^2 + \sum_{i=1}^{n} d_i(d_i - d_n)} = 2r.$$

The equality holds. □
Corollary 1. If G is a connected graph, then

$$
\mu(G) \leq \frac{d'}{2} + \frac{3}{2} + \left(\frac{d' + 1}{2}\right)^2 + \sum_{i=1}^{n} d_i \left(\frac{d_i - d'}{2} - 1\right),
$$

the equality holds if and only if G is a semiregular graph or a bistar graph $G(r, r)$.

Acknowledgement

The authors are grateful to the referees for many helpful suggestions, which led to an improved version of the paper.

References